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Synopsis The advent of high-throughput sequencing (HTS) technologies has revolutionized the way we understand the

transformation of genetic information into morphological traits. Elucidating the network of interactions between genes

that govern cell differentiation through development is one of the core challenges in genome research. These networks

are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between

developmental control genes, cis-regulatory modules, and differentiation genes, which generate spatially and temporally

refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene

interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has

brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the

generation of high-resolution gene regulatory maps to analyze cell differentiation during animal development. Such maps

have enabled the identification of gene regulatory circuits and have led to the development of network inference methods

that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-

classical model systems has been limited to the identification of developmental control genes via the candidate gene

approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regu-

latory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However,

thanks to the continuous advances in HTS technologies, this scenario is rapidly changing. Here, we give a historical

overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to

unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances

and theoretical approaches to expand our understanding on the global gene regulation during animal development in

non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular

mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innova-

tions in animals.

Introduction

The emergence of multicellularity was one of the

most remarkable events in animal evolution.

Perhaps even more remarkable has been the subse-

quent evolution of cell types and animal body plans,

which reflects the capacity of multicellular animals to

give rise to a wide range of different cell types and

complex organs in a highly ordered and reproducible

manner (Arendt et al. 2016; Seb�e-Pedr�os et al. 2017).

In most—if not all—animals, the multicellular state

is established in each generation through serial divi-

sions of the zygote, where daughter cells produced by

these divisions become an independent and fully spe-

cialized cell type. This functional specialization

occurs largely during development and involves the

tight coordination of cell proliferation, cell
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differentiation, tissue growth, and developmental ge-

netic programs (Peter and Davidson 2011a; Brunet

and King 2017).

In the past few years, many studies have revealed

that genes encoding transcription factors and signal-

ing molecules are critical controllers of pattern for-

mation and cell fate specification during

development (Zeitlinger and Stark 2010). Notably,

most of these genes are highly conserved across ani-

mals (i.e., metazoans) and even their closest unicel-

lular relatives (Larroux et al. 2008; de Mendoza et al.

2013; Seb�e-Pedr�os et al. 2017). This striking level of

conservation suggests that cell types and animal body

plans are, at least partially, controlled by the regula-

tory capacities of these highly conserved genes. Yet,

we cannot help but be intrigued by how such a con-

served set of genes with few examples of gene expan-

sions and little changes in their functionality (Carroll

2008; Seb�e-Pedr�os and de Mendoza 2015) can lead

to the vast diversity of cell types and body plan

forms found in animals.

Developmental control genes have been character-

ized for decades. This characterization has been fo-

cused on comparisons of the spatiotemporal

expression patterns of these genes among divergent

species, suggesting that transcription factors and sig-

naling molecules participate in multiple, independent

developmental processes (Arthur 2000; Martindale

2005; Carroll 2008; Mart�ın-Dur�an et al. 2018).

Most importantly, however, it appears that changes

in the spatial regulation of developmental control

genes are related to morphological divergence, sug-

gesting that the changes in morphology are the result

of nucleotide substitutions in cis-regulatory elements

and amino-acid substitutions in transcription factors

affecting the regulation of gene expression (Lynch

and Wagner 2008; Lynch et al. 2011).

This notion is not new and was hypothesized

more than four decades ago by Britten and

Davidson (1969, 1971), who postulated that inter-

genic genomic regions and mutational changes in

protein-coding sequences have an important role in

determining differences in gene regulatory patterns,

and consequently, in animal body plan diversity.

Therefore, animal body plan evolution, along with

cell type evolution, is controlled by the precise reg-

ulation of gene expression in time and space, which

in turn is driven by developmental gene regulatory

networks (dGRNs) (Davidson and Erwin 2006; Peter

and Davidson 2011a). Such networks comprise a

constellation of elements including regulatory genes

(transcription factors, signaling molecules, non-

coding RNAs), regulatory sequences (cis-regulatory

modules, enhancers, promoters, insulators), and

target genes (differentiation and structural genes),

which interplay tightly to trigger induction or repres-

sion of gene expression (Levine 2010; Peter and

Davidson 2011a; Rebeiz et al. 2015). Therefore, the

right execution of this molecular choreography, re-

peated anew in every generation, is fundamental to

the life of every animal on Earth.

Recent advances in evo-devo have focused on de-

termining the regulatory gene interactions that under-

pin the dGRNs and how these interactions control the

process of regulation of gene expression during ani-

mal development. In this sense, many molecular

mechanisms that underlie dGRNs and influence cell

type and animal body plan evolution have been char-

acterized in vertebrates (Loose and Patient 2004;

Parfitt and Shen 2014; Goode et al. 2016; Gouti

et al. 2017; Hamey et al. 2017), sea urchin (Peter

and Davidson 2010, 2011b; Rafiq et al. 2014;

Erkenbrack 2016), Drosophila melanogaster (Nasiadka

et al. 2002; Schroeder et al. 2004; Sandmann et al.

2007), and Caenorhabditis elegans (Maduro and

Rothman 2002; Inoue et al. 2005; Ririe et al. 2008).

Results obtained from these classical model systems

have shown that changes in animal body plan forms

are the result of evolutionary changes in the architec-

ture of these dGRNs (Davidson 2010a; Peter and

Davidson 2011a; Hinman and Cheatle Jarvela 2014).

Thus, the evolution of dGRNs plays a key role in the

emergence of animal diversity.

Beyond these classical model systems, little infor-

mation exists concerning the transcriptional develop-

mental dynamics in other animals (Leininger et al.

2014; Israel et al. 2016; Levin et al. 2016; Dylus et al.

2018), or the changes in cis-regulatory modules con-

trolling embryonic development (Schwaiger et al.

2014; Gaiti et al. 2017). However, this has started

to change due to rapid advances in high-

throughput sequencing (HTS) technologies. Here,

we review how dGRNs have been deciphered, discuss

how recent advances in HTS technologies have

helped to refine the inference of dGRNs, and how

these new technologies have been (and can be) used

to unravel dGRNs in non-classical model systems.

We expect that findings obtained from classical

model systems will be coupled with data from other

phylogenetically informative non-classical model sys-

tems in order to achieve a better understanding of

how cell types and animal body plans might have

evolved (Achim et al. 2015).

dGRN architecture

dGRNs can be represented as complex logic maps

that state in detail the interactions between
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developmental control genes (transcription factors

and components of cell signaling pathways) and

cis-regulatory modules (promoter, enhancers, and

insulators) in order to visualize how differentiation

and structural genes (target genes) are turned off or

on at a given time and location during development

(Levine and Davidson 2005). In addition, dGRNs

have a modular architecture, consisting of multiple

sub-circuits—each in charge of individual regulatory

tasks defined by a set of specific developmental con-

trol genes and their cis-regulatory modules (Erwin

2009; Davidson 2010a). Building on this modular

architecture, dGRNs are hierarchical as they are di-

vided into different components. For example, the

components controlling the initial stages of develop-

ment are at the top of the hierarchy, while the por-

tions governing intermediate processes, such as

spatial subdivision and morphological patterns are

in the middle, and the components controlling

more specific functions, including cell differentiation

and organogenesis/morphogenesis are at the periph-

ery (Erwin 2009).

The hierarchical organization of dGRNs leads to

diverse evolutionary rates in components that oc-

cupy different parts of the network. For instance,

the components known as kernels, which consist of

conserved interactions among transcription factors

(Davidson 2010b), are highly conserved regulatory

interactions showing slow changes during evolution;

thus, it is believed that they are responsible for the

progenitor states of a developing structure (Davidson

and Erwin 2006). In contrast, other components of

the network, known as intermediate and peripheral,

are more evolvable and often co-opted to different

functions during development or subjected to gene

loss or duplication events over evolution; therefore,

changes in these components occur at high evolu-

tionary rates and have great impacts on the pheno-

type (Wittkopp et al. 2002; Aguilera et al. 2017; Peter

and Davidson 2017). Although there have been

reviews which develop hypotheses on how dGRNs

might evolve (Carroll 2008; Peter and Davidson

2011a), there are currently few comparisons of

dGRN topologies (Hinman and Cheatle Jarvela

2014; Andrikou and Arnone 2015; Kittelmann et al.

2018). Therefore, understanding how the compo-

nents of dGRNs have evolved among animal species

is a central problem in evo-devo, which can only be

resolved through comprehensive comparisons of

dGRN architecture in classical model systems with

those of non-classical model systems with important

phylogenetic positions in the animal tree of life.

Despite the paucity of comparative dGRN analyses,

some studies suggest that the evolution of cell types

and animal body plans depends upon changes in the

architecture of dGRNs (Carroll 2008; Peter and

Davidson 2011a; Hinman and Cheatle Jarvela

2014), while others suggest that molecular regulatory

networks can be diverse and the high evolvability of

dGRNs does not generate drastic changes in the an-

imal body plan (Sommer 2012).

Initial strategies for unraveling dGRNs

The first theoretical model describing the mecha-

nisms controlling gene regulation in higher eukar-

yotes was postulated by Eric H. Davidson and his

long-time colleague Roy J. Britten (Britten and

Davidson 1969; 1971). These seminal papers de-

scribed how trans-acting factors might regulate di-

verse batteries of genes, and how gene regulation

could have evolved and shaped the evolution of an-

imal body plans (Britten and Davidson 1969, 1971).

Since then, dGRNs have been primarily studied via

the careful and minute characterization of regulatory

interactions in specific tissues and developmental

stages in various organisms (Levine and Davidson

2005; Carroll 2008; Peter and Davidson 2011a).

Eric H. Davidson was also the founder and pioneer

of studying the molecular interactions happening

during development as a whole system. For nearly

30 years, Davidson’s lab was dedicated to untangling

all specific interactions occurring during sea urchin

(Strongylocentrotus purpuratus) development through

targeted experiments. This journey was largely com-

plemented with concurrent advances in DNA

technologies.

For instance, with the development of recombi-

nant DNA in the early 1980s and through a series

of experiments, Davidson and his colleagues charac-

terized the genomic cis-regulatory sequence of the

Endo16 gene (an endoderm-specific gene that is

expressed at the onset of sea urchin gastrulation)

(Yuh et al. 1994; Yuh and Davidson 1996). These

studies showed that protein-coding genes are con-

trolled by nearby DNA regulatory sequences that

serve as binding-sites for transcription factors, show-

ing modularity of these binding-sites and demon-

strating that different modules governed different

temporal aspects of gene expression (Yuh et al.

1994; Yuh and Davidson 1996). Over the years,

many elegant experiments were conducted in order

to understand how transcription of individual genes

is controlled in terms of time, space, and abundance

(Calzone et al. 1988; Hough-Evans et al. 1990; Wang

et al. 1995; Zeller et al. 1995; Kirchhamer and

Davidson 1996; Coffman et al. 1997; Arnone et al.

1998). These and other experiments involved the
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systematic analysis of spatiotemporal patterns of

gene expression, coupled with targeted mutational

and/or perturbation analyses, during sea urchin de-

velopment to determine the regulatory interactions

(i.e., positive or negative feedbacks) between devel-

opmental control genes, cis-regulatory modules, and

differentiation genes (Fig. 1A).

After years of these painstaking analyses regarding

the function of developmental control genes and their

cis-regulatory modules during developmental progres-

sion in sea urchin, the description of the dGRN con-

trolling the specification of the endomesoderm was

published (Davidson et al. 2002). This study gave sup-

port to Britten and Davidson’s theoretical model envi-

sioned in 1969 (Britten and Davidson 1969). After the

inference of the dGRN that governs endomesoderm

specification, the same group unraveled a dGRN con-

trolling the endoderm specification (Peter and

Davidson 2010, 2011b). Altogether, these studies

(Davidson et al. 2002; Peter and Davidson 2010,

2011b) give strong evidence that embryonic develop-

ment is directed by the dynamic progression of regu-

latory states, which means a series of sub-circuits, each

of which endows particular developmental functions

Fig. 1 Two avenues for dGRN inference. (A) Classical approach to identify regulatory interactions during animal development, originally

developed by Davidson, consisting of knockout experiments used to infer candidate regulators by comparing a perturbed gene

expression profile with a normal gene expression profile during a specific stage of the developmental process. For example, in an

experiment performed in four embryos at the same developmental stage where gene a is knocked-out, it is observed that the

expression level of gene b significantly increases while the expression of gene c decreases compared with a normal (without pertur-

bation) gene expression profile of the three genes at the same developmental stage. It can be concluded that a activates c but inhibits

the expression of b. Perturbation experiments provide a robust reproducible method to infer regulatory interactions. However, they

are difficult to apply to large sets of genes. (B) A computational network assembly can be an alternative approach to explore dGRNs in

classical- and non-classical model systems. In general, at least two types of data sets are required in this approach: (i) spatiotemporal

gene expression such as developmental transcriptomics (RNA-Seq), large scale CRISPR perturbation or in-situ hybridization data to

infer spatial co-expression; (ii) datasets that can provide information about candidate active regulatory processes such as ATAC-Seq,

ChIP-Seq, Hi-C, ChIA-PET, GROSeq. This approach poses two computational challenges: (1) heterogeneous data standardization and

integration, for example, combining time-course developmental transcriptomics with ATACSeq to infer which regulatory interactions

could be active whether regulators are transcribed and their target cis-regulatory regions are accessible during a developmental stage;

(2) dGRN assembly that implies identifying which of the inferred interactions should be kept and which ones should be dropped using

quantitative criteria. If these challenges are resolved, it would be possible to improve comparative analyses between dGRNs in different

animal taxa and facilitate the exploration of dGRNs in non-classical model systems providing a large-scale dGRN containing candidate

regulatory interactions for experimental validation.
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(Davidson and Erwin 2006; Davidson 2010b). The ap-

proach performed by Davidson was employed by other

researchers to unravel dGRNs in other species includ-

ing Drosophila (Levine and Davidson 2005) and

Xenopus (Loose and Patient 2004).

But this was not the end of Davidson’s ambitions.

He was aware that mathematical models are neces-

sary to predict the behavior of a dGRN. In this con-

text, a computational Boolean model that uses gene

expression and interaction data was generated to

predict how the dGRN would respond to perturba-

tions (Peter et al. 2012; Peter and Davidson 2017).

Although this computational model works well in

sea urchin, its inherent requirement for detailed

gene expression measurements linked to temporal

and spatial information in the developing embryo

means that such precise dGRN models cannot be

readily built for most other taxa, making compari-

sons at this level challenging.

Despite great advances in the inference of dGRNs

by Davidson and his colleagues, many of his hypoth-

eses could not be extensively tested or challenged in

systems other than the sea urchin, mainly because

relevant data on gene regulation could not be col-

lected on a high-resolution scale due to the difficul-

ties in identifying regulatory elements in the genome.

However, these limitations are now being overcome,

and we foresee that many dGRNs will be deciphered

in the near future (Hockman et al. 2018), along with

more mechanistic studies about how changes in the

genome cause changes in development.

Accurate deciphering dGRNs requires two intercon-

nected efforts. The first is collecting relevant and high-

throughput data on gene expression and regulation

mechanisms across species, while the second effort is

developing computational methods that use these ex-

pression and regulatory data to infer gene regulatory

networks (GRNs), compare networks across species,

and infer evolutionary histories (Thompson et al.

2015). Fortunately, tremendous technological and

computational advances have been made not only to

accurately measure gene expression and regulation at

all levels, but also to systematically infer dGRNs from

comparative data, and by doing so, to study the evo-

lution of these complex networks. We here describe

some of these technological and computational advan-

ces and how they have been applied to provide new

insights into the inference and evolution of dGRNs.

High-throughput temporal and spatial
nucleic acid surveys

The last decade has seen a radical change in the way

we perform developmental and evolutionary biology

experiments, largely propelled by the advent of HTS,

which has radically fostered our ability to survey

most molecules present in specific cell types, in tem-

poral and spatial contexts, in a high-throughput

manner. For instance, transcriptome sequencing

(RNA-Seq) has been successfully leveraged to

identify genes that may be relevant to embryonic

development in diverse taxa. In this regard, tran-

scriptional profiling of developmental transitions

has been successfully carried out in several animals

(Conaco et al. 2012; Akbari et al. 2013; Yang et al.

2013; Geib et al. 2014; Li et al. 2014; Nakanishi et al.

2015; Basu et al. 2016; Niu et al. 2016; Qi et al. 2016;

Gait�an-Espitia and Hofmann 2017; Simon et al.

2017; Xu et al. 2017; Torres-Oliva et al. 2018).

Additionally, large scale single embryo RNA-Seq

studies leveraging HTS technology have been done

in at least 10 different animal taxa throughout their

developmental time course (Levin et al. 2016). These

studies highlight how these technological advance-

ments have facilitated the identification of gene

cohorts expressed throughout the development of

different species. However, it is clear that the analyt-

ical methods still have room for optimization, in-

cluding how to more clearly defining orthology

between different genes as well as taking into ac-

count the phylogenetic positioning of the sampled

species (Altenhoff et al. 2016; Dunn et al. 2018).

Finally, most of these studies have thus far been car-

ried out in whole organisms, making it difficult to

extrapolate the information acquired to direct infer-

ence of dGRNs, as the spatial positioning of the

detected transcripts within the embryo is lost. To

overcome this limitation, computational techniques

are being developed to integrate high-quality expres-

sion data (i.e., in situ hybridization atlases) with

transcriptomic approaches (Achim et al. 2015;

Satija et al. 2015).

Beyond the identification of expressed transcripts,

developmental transcriptomics has also allowed us to

query the conservation of co-expressed gene modules

that can be compared across different taxa (Israel

et al. 2016). The identification of co-expression

cues in transcriptomic experiments can provide a

point of convergence between co-regulation and

GRNs through the assumption that genes which par-

ticipate in similar biological processes will share reg-

ulatory programs and, as a consequence, be co-

expressed (Ruprecht et al. 2017). However, such

approaches may be unable to capture expression dy-

namics that are largely constrained in time. For ex-

ample, if a group of genes is only transiently co-

regulated but this co-regulation is lost in subsequent

stages, the co-regulation signal may not be identified

644 S. L. Fernandez-Valverde et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/58/4/640/5039865 by U

niversidad de C
oncepcion user on 13 February 2024



as significant due to its transient nature in compar-

ison to signals present across the whole developmen-

tal time course.

Another crucial advancement in transcriptomics is

the recent development of techniques to sequence

both DNA and RNA extracted from single cells

(Tang et al. 2009; Navin et al. 2011) as well as the

development of methods to analyze such data. This

is an area of rapid growth and development in the

scientific community, as single-cell data have a num-

ber of particular caveats such as high levels of sys-

tematic bias due to several rounds of amplification,

low sequencing coverage, and high-dropout rate

(Bacher and Kendziorski 2016). Nevertheless, recent

studies have successfully characterized the embryonic

single cell transcriptomes of classical model systems

such as the mouse (Scialdone et al. 2016;

Mohammed et al. 2017), Xenopus tropicalis (Briggs

et al. 2018), zebrafish (Farrell et al. 2018; Wagner

et al. 2018), the fruit fly (Karaiskos et al. 2017),

and the nematode (Cao et al. 2017), as well as

non-classical model species such as bovines (Lavagi

et al. 2018). Remarkably, these studies have demon-

strated that this technique can be successfully applied

to a variety of systems. It will not be long before the

cost is reduced enough to enable such studies to not

be limited to a few developmental stages but for a

comprehensive developmental time course. This feat

has thus far only been achieved in human and

mouse preimplantation embryos (Guo et al. 2017;

Stirparo et al. 2018).

Several recently developed HTS techniques have

already become instrumental to mapping the inter-

actors with genomic regulatory elements. These in-

clude techniques such as 3-C based methods (e.g., 3-

C, 4-C, Hi-C, and ChIA-PET; reviewed in de Wit

and de Laat (2012)), which allow us to directly query

proximity of genomic regions via crosslinking, thus

unveiling the 3D interactions of seemingly distant

DNA stretches, for example, the interaction between

distal enhancers with core-developmental control

genes, facilitating the establishment of the regulatory

hierarchy. Other techniques such as ATAC-Seq help

us identify open regions in the chromatin which are

available for molecular interactions (Buenrostro et al.

2013), while ChIP-Seq allows us identify which ge-

nomic sites are bound by a specific regulatory pro-

tein (e.g., transcription factor, RNA-polymerase,

modified histones) (Barski et al. 2007; Johnson

et al. 2007), and GRO-Seq enables the identification

of RNAs that are being actively elongated in a par-

ticular condition (Core et al. 2008). In spite of their

recent development, these techniques have already

revealed general chromatin organization patterns,

including that evolutionary divergent chromatin or-

ganization loci tend to harbor developmental genes

(Chambers et al. 2013) and that cis-regulatory units

are reorganized during embryonic development

(Freire-Pritchett et al. 2017; Hockman et al. 2018).

Furthermore, many of these techniques have begun

to be successfully applied to single cells. For example,

ATAC-Seq has been recently used to assess chroma-

tin accessibility during C. elegans and D. mela-

nogaster development, enabling the identification of

developmental enhancers (Daugherty et al. 2017;

Cusanovich et al. 2018), while ChiP-Seq has been

applied to identify histone marks in mixed popula-

tions of embryonic stem (ES) cells, permitting iden-

tification of cell identity solely through these

epigenetic marks (Rotem et al. 2015). The caveat

that, generally, a single-cell can only be surveyed

for a single type of measurement (either DNA,

RNA-Seq, ChiP-Seq, etc.), meaning the information

acquired at different levels may not be from the ex-

act same cell, is being quickly overcome with recent

techniques allowing simultaneously profile chroma-

tin accessibility, methylation, and transcriptome

(Macaulay et al. 2017; Clark et al. 2018).

Complementary to high-throughput quantification

techniques for nucleic acids (DNA and RNA), auto-

mated technologies have greatly enhanced our capac-

ity to generate detailed spatial maps of the intra-

organismal and intracellular localization of nucleic

acids. This includes well established techniques,

such as robotic whole-mount in situ hybridization,

which automates and parallelizes the spatial survey-

ing of mRNAs (Quiring et al. 2004). In fact, public

in situ data was instrumental to spatially organize all

single cells sequenced in Drosophila embryos via the

correlation of high expression of gene markers that

had previously been spatially mapped as part of the

Berkeley Drosophila Transcription Network Project

(Karaiskos et al. 2017). This approach was so suc-

cessful that virtual in situ results generated from the

transcriptomic data were later corroborated experi-

mentally (Karaiskos et al. 2017). Other recent com-

putational advancements that have led to the

development of image identification software

through the use of machine learning have facilitated

the automated and accurate identification of subcel-

lular compartments in high-throughput in situ and

single-cell immune fluorescence experiments (Lin

et al. 2015). Additionally, techniques such as laser

capture microdissection and high throughput

Fluorescence-activated cell sorting now enable the

precise selection of minute pieces of tissue and/or

specific cell populations that can be used for se-

quencing (Datta et al. 2015; Handley et al. 2015).
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One of the most recent technological advances is

the possibility of doing perturbations in dGRNs us-

ing genome editing techniques such as CRISPR and

its derivatives. In model systems, CRISPR/Cas9 has

already been used for interrogating specific compo-

nents of GRNs. For example, in mice it has been

used to corroborate key genetic elements of a GRN

responsible for retina differentiation (Wang et al.

2014) as well as the involvement of Wnt in the ac-

tivation of Hox genes (Neijts et al. 2016). In insects,

this system has also enabled uncoupling neurogenic

GRNs in Drosophila (Rogers et al. 2017) and the

identification of core genes involved in gene pattern-

ing in a butterfly (Prakash and Monteiro 2018).

Although these studies have shown the applicability

of CRISPR/Cas9 as a genetic tool to infer gene

function, the perturbation assay is only made in

single-locus. Recently, a new technique known as

Perturb-Seq, which combines sc-RNA-Seq and

CRISPR-based perturbations in a high-throughput

manner, has emerged as a genetic screen tool able

to perform multi-locus gene perturbation assays that

allow the identification of individual gene targets,

gene signatures, and cell states affected by individual

perturbations and their genetic interactions (Dixit

et al. 2016). However, we believe both single- and

multi-locus gene perturbation assays through

CRISPR/Cas9 are extremely important for dGRN

studies as most perturbation assays in non-classical

model species rely on antisense morpholinos to

knockdown genes, a technique known to have unpre-

dictable off-target effects, variations in efficiency, and

potential toxicity (Lin and Su 2016). On the other

hand, CRISPR/Cas9 has now been implemented in a

diverse array of animals, including Nematostella (Ikmi

et al. 2014), Acropora (Cleves et al. 2018), Crepidula

(Perry and Henry 2015), Parhyale (Martin et al.

2016), Daphnia (Mohamad Ishak et al. 2017), sea

urchin (Lin and Su 2016), and Ciona (Stolfi et al.

2014), opening the possibility of conducting pertur-

bation experiments to specific GRNs and expediting

the experimental characterization of dGRNs.

Major strategies for modeling GRNs

Ever since the metaphorical proposition of differen-

tiation through canalization was proposed

(Waddington 1957), several efforts have been under-

taken to try to predict how the delimitations of cell

differentiation occur from a molecular perspective.

Network inference from transcriptomic data has

been popular since the inception of microarrays

(Chasman et al. 2016). Network inference

approaches have been recently expanded with the

use of transcriptomic data generated by HTS techni-

ques. Researchers have made several efforts to try to

use quantitative information and infer both the

structure and the regulatory interactions from bio-

logical data. Several computational and modeling

approaches can be used to study GRNs and other

types of biological networks, and can be classified

into two major categories: (1) network inference

and reconstruction (Chasman et al. 2016) and (2)

evolutionary network analysis (Thompson et al.

2015).

Regardless of the type of approach, the most dif-

ficult challenge is the adequate integration of hetero-

geneous data in the analysis. For example, gene co-

expression data can provide a general idea of which

genes are participating in a specific biological pro-

cess, but they do not provide solid evidence for

physical interactions or causality, and usually algo-

rithms based only on time-course gene expression

data do not perform better than random assignment

of regulatory interactions (Lopes and Bontempi

2013). Hence, prior biological knowledge is required

for more robust analyses (Banf and Rhee 2017a).

Several types of biological data can be used as prior

knowledge for network inference and reconstruction,

for example, DNA-binding motifs for known specific

transcription factors (Chasman et al. 2016), tran-

scription factor orthology, and cis-regulatory module

conservation (Thompson et al. 2015).

GRN reconstruction applied to embryonic develop-

ment has the additional challenge, which is both ex-

perimental and computational, of integrating both

spatial and temporal gene expression data as well as

gene perturbation data in order to infer the actual

regulators and targets in the dGRN (Li and

Davidson 2009; Lopes and Bontempi 2013). Despite

the complexity of dGRNs and the current challenges

mentioned above, there are various examples of suc-

cessful inference and reconstruction of GRNs in ani-

mals. For example, Ocone et al. (2015) proposed a

method for learning the GRN dynamics during the

differentiation of mouse hematopoietic stem cells

from single-cell snapshot data. This method first

reconstructs a dGRN and then estimates the gene

expression dynamics based on the inferred network

to compare it with the observed gene expression data

(Ocone et al. 2015). Recently, Sanchez-Castillo et al.

(2018) implemented a Bayesian method for dGRN

inference and tested it with two temporal single-cell

datasets: one spanning the zygote to blastocyst tran-

sition in mouse with measurements by qPCR; and the

other corresponding to a differentiation time course

of zebrafish hematopoietic stem cells with RNA-Seq.

This method has reported a better performance than
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previous inference methods that rely only on tempo-

ral gene expression measurements (Sanchez-Castillo

et al. 2018). Additional methods have now been de-

veloped to enable dGRNs reconstruction from single

cell data (Babtie et al. 2017); however, none of these

methods integrates any other type of regulatory or

functional data beyond gene expression yet.

Recently developed dGRN reconstruction methods

in plants do have this capacity to integrate diverse

high-throughput datasets to improve the network

inference. For example, GRACE integrates gene co-

expression with ChIP-Seq data to improve the infer-

ence of candidate regulatory interactions and suc-

cessfully recovered most of the interactions

involved in cell cycle control in Arabidopsis thaliana

(Banf and Rhee 2017b). A second example includes

the integration of detailed spatiotemporal transcrip-

tomic data to infer a dGRN involved in A. thaliana

root stem (de Luis Balaguer et al. 2017). Although

these examples of dGRN reconstruction are focused

on plants, they illustrate how the integration of dif-

ferent datasets, such as ChIP-Seq, chromatin acces-

sibility, or spatiotemporal expression datasets, could

improve the network inference in comparison to

approaches that use gene expression data exclusively

(de Luis Balaguer et al. 2017; Banf and Rhee 2017b).

Models showing that the state of regulatory genes
is not random and can converge to predictable or
stable states have been used to explain why differen-
tiated cells do not dedifferentiate spontaneously and

how their identities are maintained through time by
reaching stable gene inactivation or activation pat-
terns at the cellular level (Kauffman 1969, 1974).
Using this theoretical framework and a mathematical

definition for epigenetic landscape as the state space
of all possible cell states borrowed from dynamical
systems theory, Huang et al. (2005) proposed a
model based on the mathematical representation of

the cell states to model the transition from undiffer-
entiated to differentiated cells. This kind of model
has been also used to model differentiation in cancer
(Huang et al. 2009), induced pluripotent stem cells

(Huang 2010), and stem cells (Huang 2011). For a
general discussion and details about landscape
modeling, see Huang (2010) and Huang (2012). A
modified version of landscape modeling was pro-

posed more recently based on evidence from
single-cell experiments: Moris et al. (2016) propose
that cell fate transitions are both stochastic and dis-
continuous and discuss how this idea differs from

the classical view of continuous cell fate transition
in the Waddington’s epigenetic landscape
(Waddington 1957). There are also more recent
approaches to the problem of cell state transition

during differentiation. Herberg and Roeder (2015)
review some of the models that had been developed

to model pluripotency control in ES cells and discuss
how a successful GRN modeling should help to ex-
plain how the control of pluripotency drives cell fate
during normal development and why induced pluri-

potency is experimentally hard to achieve. Other
models try to uncover the general mechanisms that
drive cell differentiation at the single-cell level, for
example, Stumpf et al. (2017) created a method to

model stem cell differentiation in mouse neuronal
lineage to explain transcriptional heterogeneity, this
is, the observed differences in gene expression ob-
served between cells derived from the same progen-

itor cell. This study concludes that a non-Markov
stochastic model could explain cell differentiation
in animal stem cells and account for cell heteroge-
neity whether the stochasticity of gene expression

produced by the underlying pluripotency regulatory
network is considered.

As these models remain to be applied into an or-

ganismal development context, the question that

remains is whether we will ever be able to predict

how cells will be changing identity through differen-

tiation space by measuring the concentration of mol-

ecules within this cell during the transition.

The integration challenge of different
high-throughput data and GRNs

As discussed earlier, we have now all the data nec-

essary to do a thorough characterization of dGRNs.

Although we can now generate high-throughput in-

formation on molecules composition, abundance,

and spatial and temporal organization, we still lack

precise ways to detect interactions accurately in a

one to one manner. Furthermore, the sheer scale of

HTS measurements inherently entails a number of

errors (false positives and false negatives) that has

to be taken into account when using this data for

dGRN reconstruction. To add complexity, data inte-

gration itself is challenging and relies on what ques-

tion we want to answer with our data in order to

choose an unbiased or supervised integration strat-

egy (Hawkins et al. 2010). These caveats highlight

the great challenge in integrating results from diverse

HTS experiments to understand the logic of complex

systems such as dGRNs (Hawkins et al. 2010). We

also now have experimental techniques to specifically

perturb gene expression in selected tissues and de-

velopmental time-points as well as techniques to in-

fer regulatory relationships using quantitative data

with relative success. Therefore, a new question

arises: How do we integrate this information within

dGRN inference beyond non-classical model systems 647

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/58/4/640/5039865 by U

niversidad de C
oncepcion user on 13 February 2024



a coherent and potentially predictive framework

where regulatory genes, cis-regulatory modules, and

differentiation genes and their interactions affected

by perturbations are modeled to predict cell type

differentiation or specific animal body plans?

As previously mentioned, there are already suc-

cessfully integrated sets of data allowing the dissec-

tion of well-defined dGRNs. Some prime examples

are the endomesoderm and endoderm specification

dGRNs in the sea urchin S. purpuratus. Given its

comprehensive characterization at molecular and

spatiotemporal resolution, attempts have been

made at modeling its interactions using Boolean

models to predict stable states that may correlate

with differentiated cell types (Peter et al. 2012;

Peter and Davidson 2017). These networks have

also been used in combination with transcriptomic

information to do thorough comparative analysis of

GRNs between sea urchins and sea stars (Hinman

and Cheatle Jarvela 2014; Cary and Hinman 2017).

These comparisons have unveiled remarkable conser-

vation in the regulatory architecture of such net-

works, improving our comprehension of

morphogenetic processes (e.g., echinoderm skeleto-

genesis) and how regulatory interactions drive mod-

ifications to developmental outcomes (e.g.,

morphological novelties), which ultimately, has pro-

vided a better understanding of the evolution of an-

imal body plans. However, getting such detailed

interaction networks took over 30 years of devoted

work by the Davidson lab and others in the scientific

community. Given that it remains highly impractical

to carry out similar experimental dGRN characteri-

zation efforts in broad taxon sampling, can we cap-

italize on HTS technologies to accelerate our rate of

understanding of dGRNs in non-classical model

systems?

We believe the answer to this question lies in

leveraging theoretical developments aimed at the in-

ference of GRNs directly from quantitative measure-

ments of the concentration of mRNA and other

molecules combined with the recently developed

technical approaches of surveying all mRNAs in

shortly timed snapshots in single cells from full em-

bryos (Fig. 1B). Multidimensional mapping of the

transcription content of such sequencing has

revealed that it is possible to differentiate groups of

cells in the embryo (Cao et al. 2017; Karaiskos et al.

2017; Achim et al. 2018; Briggs et al. 2018; Farrell

et al. 2018; Wagner et al. 2018); however, their lo-

calization cannot be solely inferred via their tran-

scriptional content, as previously illustrated in the

Drosophila and Platynereis embryos (Achim et al.

2015; Karaiskos et al. 2017). In this case, single-cell

transcriptomic data had to be informed by in situ

hybridization experiments to be able to accurately

spatially place all sequenced cells in the embryo

(Achim et al. 2015; Karaiskos et al. 2017). This high-

lights two facts: (1) there is no smooth spatial pro-

gression between the transcriptional information of

different cell types, and (2) with current single-cell

HTS technology, we are still unable to infer spatial

localization solely from gene expression data.

This is not surprising given that discrete domains

of expression and cell identity are well known to

exist within developing embryos. Building on this

idea, recent work has highlighted the possibility

that cells are not smoothly transitioning between dif-

ferentiation states, but that they undertake alterna-

tive highly heterogeneous expression patterns

comprising a transition state, which is necessary for

them to arrive to another differentiated or

“attractor” state (reviewed in Moris et al. (2016)).

A recent article has provided experimental evidence

for this hypothesis, showing that single cells show

higher transcriptional variation while they are tran-

sitioning between two differentiated states (Stumpf

et al. 2017). These findings could help explain

some of the high expression heterogeneity commonly

observed in single-cell HTS data. However, this does

not preclude us from using this integrated informa-

tion to begin to computationally infer dGRNs at

least at the level of identifiable cell populations

through a species development.

Recent studies in basal metazoans have demon-

strated HTS techniques can be used in non-

classical model systems to acquire information about

their underlying regulatory mechanisms. Two key

studies have surveyed for histone modification marks

associated with gene regulatory elements in a sponge

(Gaiti et al. 2017) and a cnidarian (Schwaiger et al.

2014). Interestingly, both studies found evidence for

typically metazoan looking enhancers, while lacking

identifiable insulator elements. Indeed, orthologues

of CTCF, a major effector protein which binds to

insulators, seems to be found with high homology

solely within Bilateria (Heger et al. 2012); however,

the weaker association between TAD boundaries and

CTCF in species such as Drosophila raises the possi-

bility that other proteins could be carrying out sim-

ilar functions to CTCF in non-bilaterians (Ram�ırez

et al. 2018). How distal regulatory elements and nu-

clear topology influence gene expression in animal

taxa with diverse chromosome number and genome

size is one of the future frontiers of network infer-

ence approaches.
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Final remarks and future perspectives

We are at a crucial moment in the development of

HTS technologies and their integration. Unless we

begin to use them to survey and model a larger

part of the planet’s biodiversity (Lewin et al. 2018)

and untangle the GRNs in a number of organisms

with a variety of life histories embryonic forms,

informative phylogenetic position in the animal

tree of life, we will be unable to acquire the necessary

knowledge to understand the mechanisms of cell

type and morphological evolution in animals.

However, we believe this goal is now within reach

through the integration of experimental and theoret-

ical approaches to improve our predictive modeling

of dGRNs in non-classical model systems that cannot

be readily achieved using their genomic sequence

alone.

In this review, we have argued for the use of

mathematical modeling techniques as complemen-

tary tools for hypothesis generation in evolutionary

developmental biology, specifically, testable hypothe-

sis about dGRN architecture in non-classical model

systems. We believe these approaches can be com-

plementary to quantitative developmental biology

techniques as these integrated approaches have al-

ready been proven useful to dissect and frame bio-

logically the large amounts of quantitative data and

spatially restricted data that we are now able to ac-

quire using HTS technologies. We foresee that this

experimental framework will enhance our ability to

detect cis-regulatory sequences, gene interactions,

and to predict dGRNs in different biological contexts

such as cell type diversity and embryonic develop-

ment. In addition, we believe that non-classical

model systems are poised to most benefit from

such approaches due to the rapid advancement of

HTS technologies.

We expect in the near future that information

derived from classical model system will be coupled

with dGRNs from non-classical model systems to

identify key evolutionary modifications that led to

the fascinating diversity of animal forms seen in na-

ture. Such integrated approaches will deliver new

knowledge in dGRN evolution that will allow us to

better understand the molecular mechanisms under-

pinning cell identity and development in animals

and beyond.
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