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Rapid evolution of pearl oyster
shell matrix proteins with repetitive,
low-complexity domains

Carmel McDougall, Felipe Aguilera and Bernard M. Degnan

School of Biological Sciences, The University of Queensland, Brishane, Queensland 4072, Australia

The lysine (K)-rich mantle protein (KRMP) and shematrin protein families are
unique to the organic matrices of pearl oyster shells. Similar to other proteins
that are constituents of tough, extracellular structures, such as spider silk, she-
matrins and KRMPs, contain repetitive, low-complexity domains (RLCDs).
Comprehensive analysis of available gene sequences in three species of pearl
oyster using BLAST and hidden Markov models reveal that both gene families
have large memberships in these species. The shematrin gene family expanded
before the speciation of these oysters, leading to a minimum of eight orthology
groups. By contrast, KRMPs expanded primarily after speciation leading to
species-specific gene repertoires. Regardless of their evolutionary history,
the rapid evolution of shematrins and KRMPs appears to be the result of
the intrinsic instability of repetitive sequences encoding the RLCDs, and the
gain, loss and shuffling of other motifs. This mode of molecular evolution is
likely to contribute to structural characteristics and evolvability of the pearl
oyster shell. Based on these observations, we infer that analogous RLCD pro-
teins throughout the animal kingdom also have the capacity to rapidly evolve
and as a result change their structural properties.

1. Introduction

The molluscan shell is an excellent example of the biofabrication of a highly
complex and organized structure at nanoscale dimensions. The control of
shell formation is provided, at least in part, by proteins that form an organic
matrix within the shell. These proteins are secreted by epithelial cells lining a
specialized organ, the mantle. It appears that the deposition of various shell
layers is controlled by regionalized expression of genes within different zones
of the mantle [1,2]. In both abalone (Haliotis) and pearl oyster (Pinctada) species,
the outer prismatic shell layer is thought to be controlled by genes expressed in
the mantle edge, whereas the inner nacreous (mother of pearl) layer is likely to
be controlled by genes expressed more proximally, in the pallial zone [3-6].
Genes with zone-specific expression patterns have begun to be identified, but
their functions are largely unknown [1,4,7-10].

The most highly expressed genes in the mantles of the three most com-
mercially valuable pearl oyster species (Pinctada fucata, Pinctada maxima and
Pinctada margaritifera) predominately belong to two families, the lysine (K)-rich
mantle proteins (KRMPs) and the shematrins [5,11]. Both gene families encode
secreted glycine-rich proteins that possess repetitive, low-complexity domains
(RLCDs) and a basic C-terminal domain [12,13]. The repeats within shematrin
genes are similar to those found in spider silks [12], and KRMP genes encode
basic proteins (isoelectric points between 9.5 and 9.8) with conserved 5’ lysine-
rich domains containing six characteristic lysine residues [13]. The incorporation
of proteins from these gene families into the shell has been confirmed by proteo-
mic techniques [7,12], and it is thought that proteins with these characteristics
may be components of the silk-like gel observed within mollusc shells [14].
Although both KRMPs and shematrins originally were thought to be specific to
the prismatic layer, the expression of members of both families in the mantle pal-
lial and outer mantle fold indicates that these proteins may also have a role in the
formation of the nacreous layer and periostracum [5,11,15].
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RLCDs, particularly those that are glycine-rich, are com-
monly secreted by a wide range of organisms, including
molluscs [16], insects [17] and plants [18,19]. Interestingly,
these proteins are usually found in tough, extracellular struc-
tures, such as eggshells, cuticles or cell walls, suggesting
that the RLCDs have a structural role. The exact function of
these proteins is difficult to elucidate. For mollusc proteins,
sequence similarity with other characterized proteins or in vitro
crystallization studies have lead researchers to suggest that
glycine-rich RLCDs may be cross-linked by quinone-tanning
[13], form B-sheets [6], be involved in chitin-binding [20] or
cause inhibition of CaCOj precipitation [21]. Because the behav-
iour of these motifs in vivo is likely to be affected by multiple
factors, such as interactions with other organic matrix compo-
nents and differences in physiological conditions, more insight
into the true functions of these proteins are likely to be obtained
via reverse genetics. Knock-down of one KRMP gene in P. fucata
by RNAI lead to the abnormal formation of prismatic tablets
[22], however, the contributions of RLCDs and the mechanisms
by which this phenotype was produced remain obscure.

The presence of RLCDs and high levels of expression of both
KRMP and shematrin genes indicates that they are likely to have
key roles in shell formation. Members of both families have been
reported from P. fucata, P. maxima and P. margaritifera, however,
the repetitive nature and rapid evolution of the genes makes
alignment of the sequences and orthology assignments difficult
[2,5]. The discovery of previously undescribed KRMP sequences
in P. maxima [15] indicates that more family members may
remain to be discovered. The recent availability of next-gener-
ation transcriptome data for several molluscs, including these
three pearl oyster species, and the publication of the P. fucata
draft genome [23] vastly increases the sequence data available,
enabling a more thorough investigation into the gene comp-
lements of these animals. The phylogenetic relationships of
the three species are also well understood; P. maxima and
P. margaritifera are closely related, diverging from the P. fucata
lineage approximately 14 Mya [24]. This knowledge, along
with the sequence data, provides a powerful platform for analys-
ing the evolution of key gene families involved in the shell
formation process, and will lead to an understanding of the
molecular mechanisms underlying the key morphological differ-
ences seen in the shells of these commercially important bivalves.

2. Material and methods
2.1. Sequence data

Publicly available transcriptome data from previous studies [7,11]
were downloaded from DDBJ (P. fucata mantle edge, mantle pallial
and pearl sac, http://trace.ddbjnig.acjp/DRASearch/study?
acc=DRP000399) and NCBI (P. margaritifera mantle, http://trace.
ncbinlm.nih.gov/Traces/sra/?study=SRP002635). EST sequences
from adult P. maxima mantle pallial have previously been reported
[5], and were supplemented with 454 transcriptome data from
juvenile whole mantle (F. Aguilera 2013, unpublished data). Mytilus
galloprovincialis sequences were downloaded from MG-RAST
(http://metagenomics.anl.gov/metagenomics.cgi?page=Download
Metagenome&metagenome=4442949.3) [25], Crassostrea  gigas
from  Sigenae  (http://public-contigbrowser.sigenae.org:9090/
Crassostrea_gigas/download) and Lottia gigantea from JGI (http://
genome.jgi-psf.org/Lotgil /Lotgil.download.ftp.html). De novo
assembly was performed using CLC Genomics Workbench v. 5.0.1
with default settings, followed by translation of all contigs and
unmapped reads in all six frames to enable profile searching.

2.2. Initial identification of KRMP and shematrin
sequences

Previously identified shematrin and KRMP sequences were
downloaded from NCBI and manually aligned in Se-Al v. 2.0
[26]. These sequences were used as queries to identify similar
sequences in the Pinctada spp. translated datasets by BLAST"
[27]. tBLASTn searches were supplemented by manual searching
of sequences for common sequence motifs. All identified poten-
tial KRMP and shematrin homologues were added to a global
KRMP or shematrin alignment. From this alignment, it was poss-
ible to distinguish groups of highly similar sequences, which likely
represented allelic variants of a single gene. To confirm this, repre-
sentative sequences from each group were used to query the
P.  fucata genome (http://marinegenomics.oist.jp/genomes/
gallery?project_id=20) using a tBLASTn search against the
pfu_1.00_genome database with an e-value cut-off of 50. Any
identified genomic sequences with similarity to known shematrins
or KRMPs were added to the global alignments. The likely intron/
exon structure of these genes was determined by alignment to
sequenced transcripts and/or by the program GENscaN [28].

2.3. Profile searching

The global KRMP and shematrin alignments were submitted
to HMMER 3.0 (hmmer.org) for the generation of profile
hidden Markov models (profile HMMs) for each gene family
(see the electronic supplementary material, files S1-54). Three
profiles were generated for shematrin proteins, one based on
an alignment of all sequences (shematrin-all), a second based on
an alignment of shematrin-1 and shematrin-2 (shematrinl/2) type
sequences, and a third based on an alignment of all shematrins
except shematrin-1 and shematrin-2 (shematrin-other). A single pro-
file was generated for the KRMPs. These profile HMMs were
then used to query NCBI's non-redundant database (using the
hmmsearch program at hmmer.org) to assess their effectiveness,
before being used to search the P. maxima, P. margaritifera,
P. fucata, M. galloprovincialis, C. gigas and L. gigantea translated
datasets for KRMP or shematrin family members. Sequences
identified by these profiles were aligned using CLustaLX [29].

2.4. Phylogenetic analysis

The KRMP alignment was trimmed to include only the 5
lysine-rich region and to remove any gaps. Two shematrin align-
ments were created, one containing the signal peptide and
motif 2 from all shematrins excluding shematrins 4, 5 and 8,
and a second containing the signal peptide and the basic domain
from all shematrins. Incomplete sequences were removed from
both alignments. Phylogenetic trees were constructed using the
PryLip 3.66 package [30]. A neighbour-joining tree was produced
using the JTT matrix with 1000 bootstraps, and a consensus tree
was produced. Bayesian analysis was performed using MRrBAYEs
v. 3.2.1 [31], with two runs for 1 million generations (sampled
every 100, first 250 trees discarded as burn-in) using the mixed
amino acid substitution model and the gamma likelihood model
for among-site variation. Trees were viewed and edited using
FIGTREE [32]. All alignment files are available on request.

3. Results

3.1. Efficacy of identification of KRMP and
shematrin sequences using profile

hidden Markov models
Alignments of known and newly identified KRMP and
shematrin sequences were used to generate profile HMMs
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representing each of these gene families. The effectiveness of
these profile HMMs to identify family members was tested
by applying them to NCBI's non-redundant database. The
KRMP profile HMM produced 21 significant hits, all of
which were previously identified KRMPs. Similarly, the
shematrin1/2 profile HMM produced 18 significant hits, all of
which were shematrins. Both the shematrin-all and shematrin-
other profile HMMs produced false-positive hits, however,
all of these except one had an e-value greater than x10~*°.
All together, the profile HMMs were capable of identifying
all known KRMP and shematrin sequences at an e-value
of x107'° or lower, and are, therefore, likely to be useful for
reliably identifying family members from datasets using this
cut-off level. The profile HMMs were then used on transcrip-
tion datasets from three species of pearl oyster (P. maxima,
P. margaritifera and P. fucata).

To discover whether the shematrin and KRMP gene
families are unique to pearl oysters, the KRMP and shematrin
HMM profiles were used to screen 454 sequence data from
mantle tissue of the mussel, M. galloprovincialis [33], Sanger-
sequenced ESTs from the edible oyster C. gigas (including
ESTs sequenced from mantle tissue) [34] and all gene models
from the genome sequences of the limpet L. gigantea. No
KRMP or shematrin sequences were discovered in any of
these molluscs, indicating that these gene families are probably
restricted to pearl oysters and possibly their closest relatives.

3.2. Shematrins
The P. fucata whole-genome assembly was queried via tBLASTn
searches using previously identified shematrin sequences as
queries. The expectation threshold was raised to 50 to allow
the reporting of weak BLAST hits. In total, 13 genomic regions
were identified that possessed open reading frames with
shematrin-like characteristics (see the electronic supplemen-
tary material, table S1). Two of these appear to be alleles of
the same locus (see the electronic supplementary material,
table S2). All of the seven previously identified P. fucata shema-
trin genes [12] were represented. Two P. fucata shematrin-2 genes
are reported on NCBI, each with slightly different sequences
(accession nos BAE93434 and ABY54785). Both of these
sequences are represented by genomic scaffolds, therefore, it is
likely that they are independent genes. MSI31, a previously
reported sequence identical to shematrin-2 at the N-terminus
but with divergent XSEEDY” RLCDs in the C-terminus [6], is
not represented in the genome and can be generated by a
single nucleotide deletion at position 671, causing a frameshift.
Three genomic sequences do not correspond to any
previously identified shematrin genes. One of these has a
lower glycine content than the other shematrins, however,
it possesses a signal peptide, a shematrin-like C-terminal
basic motif (PKRKKY), and repetitive sequence structure,
indicating that it belongs to this gene family (figure 1). This
newly reported sequence has thus been named PfuShematrin8
(PfuShem8), in accordance with the naming scheme pre-
viously developed for this gene family in P. fucata [12]. The
remaining two sequences have been named PfuShem9a and
PfuShem9b owing to their high level of sequence similarity
over their entire length. They also possess a signal peptide,
a shematrin-like C-terminal basic motif (PKRKKY), and
repetitive sequence structure, as well as a sequence motif
shared between PfuShem1, PfuShem2a, PfuShem2b, PfuShem3
and PfuShemé6 (figures 1 and 2).

PfuShem9a and PfuShem9b were the only two shematrin [ 3 |

genes found on the same scaffold, where they are positioned
in the same orientation and are separated by 1642 base pairs
(bp). Although several of the genomic shematrin sequences
are incomplete at either their 5’ or 3’ end, the genes are gen-
erally composed of two exons, with the intron located within
the C-terminal basic domain. Two genes deviate from this
stereotypical arrangement; PfuShem?7 is encoded by a single
exon, whereas PfuShem5 is encoded by four exons and does
not have an intron in the basic domain (see the electronic
supplementary material, figure S1).

Within the P. fucata transcriptome, the three shematrin
profile HMMs identified 37 sequences from the mantle
edge library, 827 from the mantle pallial library, and six
from the pearl sac library. Upon alignment with the genomic
sequences, transcripts representing all identified shematrin
sequences except for PfuShem9a and PfuShem9b were found.
No additional shematrin sequences were discovered.

The P. fucata shematrin sequences were used as queries to
interrogate the P. margaritifera and P. maxima transcriptome
datasets via tBLASTn. In P. margaritifera, four previously
unreported shematrin sequences were identified, whereas
five were identified in P. maxima. The three shematrin profile
HMMs identified 2697 sequences from the P. margaritifera
transcriptome, and 154 sequences from both the adult and
juvenile P. maxima transcriptomes. All of these sequences rep-
resented either previously discovered shematrin genes, or
those identified by BLAST searches as mentioned above.
No additional shematrin sequences were identified by the
shematrin profile HMMs.

For each species, an alignment of shematrin sequences
was created from NCBI, BLAST searches and HMM searches.
Sequences that were of poor quality (numerous ambiguous
nucleotides in the nucleotide sequence) or possessed frame-
shift-inducing mutations were not included. For each
sequence type, which here we infer represents a single
gene, several variants were found. These variants are unlikely
to be the result of sequencing error, as they usually consist of
differing numbers of amino acid repeat units (greater than
6 nt), rather than small indels of a few nucleotides (see the
electronic supplementary material, figure S2). We infer that
these variants represent alleles. From each type, a representa-
tive sequence (usually the longest sequence) was selected and
designated as a gene. If the difference between two similar
sequences involved more than simple repeat variation (i.e.
the generation of stretches of unique sequence), the two
sequences were treated as separate genes. These sequences
were then used to create an alignment of shematrin genes
from all three species, presented in figure 1. A description
of the relationships between the gene names in this figure
and those of previously identified shematrin genes is
provided in electronic supplementary material, table S3.

This more comprehensive understanding of the shematrin
gene family allows the identification of sequence and motif
similarities between family members that was previously
obscured [5]. As well as the signal peptide and the basic
C-terminal domain, several other motifs, including acidic
domains and particular types of glycine-rich repeats,
become apparent (see figure 2 and electronic supplementary
material, figure S3). The levels of similarity between genes in
the alignment and the particular motifs shared between
genes from different species indicates that the shematrins
fall into eight orthology groups (see black bars in figure 1),
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Figure 1. Alignment of Pinctada maxima, Pinctada margaritifera and Pinctada fucata shematrin sequences. The horizontal bar indicates the signal peptide. Dashes
represent gaps in the alignment and blank lines represent missing sequence. An asterisk represents a stop codon. Orthology groups are indicated by thick vertical
bars. (Online version in colour.)

suggesting that the major diversification of the shematrin a ninth orthology group or an early duplication within
gene family occurred before the divergence of the three the P. fucata lineage, distinguishing between these alterna-
species. The P. fucata shematrin 9 sequences may represent tives will require identification of shematrin 9 sequences in
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Figure 2. Schematic representation of sequence motifs in shematrin genes. (Online version in colour.)
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Figure 3. Genomic arrangement of clustered P. fucata KRMP genes. Direction of arrowheads indicate gene orientation. (Online version in colour.)

P. maxima and/or P. margaritifera or identification of a reliable
outgroup in order to determine an appropriate location
in which to root phylogenetic trees. Only PmaxShem8 and
P. maxima/margaritifera shematrin 9 genes have not been ident-
ified, however, this may simply be a consequence of the lack of
whole-genome data for these species, and may not represent
gene loss. Both P. fucata and P. maxima have had additional
duplications of shematrin 2, as these are lineage-specific they
have been named PfuShem2a/PfuShem2b and PmaxShem2af
PmaxShem?2 B to avoid false impressions of orthology. Pinctada
maxima shematrin sequences have been submitted to NCBI
(accession numbers KC494066-70, KC505164-7).

The only regions of the alignment that are conserved across
all shematrin genes are the signal peptide and short basic
domain, when concatenated these domains produce an align-
ment of 21 amino acids, which is not of sufficient length to
build a reliable phylogenetic tree. Nonetheless, trees built
with this alignment, and also with an alignment that includes
the signal peptide and motif 2, but excluding shematrins 4, 5
and 8, support the orthologous groups outlined above (see
the electronic supplementary material, figure S4).

3.3. KRMPs

The P. fucata whole-genome assembly was queried via tBLASTn
searches using previously identified KRMP sequences as
queries. As for the shematrin genes, the expectation threshold
was raised to 50 to allow the reporting of weak BLAST hits.
Twenty-two genomic regions were identified that possessed a
clear open reading frame with KRMP-like characteristics (see
the electronic supplementary material, table S4). Six of these

appear to be alleles of the same locus (see the electronic sup-
plementary material, table S5). All of the four previously
identified P. fucata KRMP genes [13,35] were represented (two
of these appear to represent variants of the same gene), whereas
13 unreported sequences were found. In several cases, multiple
KRMP genes were found on the same scaffold (figure 3). All
P. fucata KRMP sequences were encoded by a single exon.

Within the P. fucata transcriptome, the KRMP profile HMM
identified 22 sequences from the mantle edge library, 46
sequences from the mantle pallial library and six sequences
from the pearl sac library. Upon alignment with the genomic
sequences, transcripts representing most of the sequences
identified from the genome were present. Sequences with-
out transcript evidence include PfuKRMPf11, PfuKRMPf12,
PfuKRMPIf2 and PfuKRMPIf3. No additional KRMP sequences
were discovered in these transcriptomes.

The P. fucata KRMP sequences were used as queries to
interrogate the P. margaritifera and P. maxima transcriptome
datasets via tBLASTn. In P. margaritifera, four previously
unreported KRMP sequences were identified, whereas five
were identified in P. maxima. The KRMP profile HMM ident-
ified 1037 sequences from the P. margaritifera transcriptome,
these sequences represented all previously reported KRMP
sequences except for PmargKRMPr6 (KRMP11, ABP57449),
and eight sequences that were not previously reported or dis-
covered by BLAST. In P. maxima, the KRMP profile HMM
identified 88 sequences from the juvenile and adult trans-
criptomes. The sole previously reported P. maxima KRMP
sequence PmaxKRMPx3 (KRMP7, P86960) was identified as
well as nine sequences that were not previously reported or
discovered by BLAST.
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Figure 4. Alignment of . maxima, P. margaritifera and P. fucata KRMP sequences. The horizontal bar indicates the signal peptide. Dashes represent gaps and blank
lines represent missing sequence. An asterisk represents a stop codon. Vertical bars and numbers refer to the groups described in figure 5. (Online version in colour.)

For each species, each sequence type was represented
by multiple transcripts with minor variations, such as the
insertion or deletion of repeat elements. This was reminiscent
of the situation for shematrin genes, therefore, the same rules
were used to designate representative sequences for each
sequence type, which likely correspond to individual genes.
An alignment of these representative sequences from all
three species was generated (figure 4). In contrast to the she-
matrin gene family, patterns of orthology were not evident
from sequence alignment alone. Fortunately, all KRMP
sequences possess a conserved lysine-rich domain with a
stereotypical pattern of six cysteine residues. This conserved
region was used to construct a neighbour-joining tree
(figure 5; Bayesian analysis produced trees with similar top-
ology, differing slightly at some terminal nodes, data not
shown). This tree supports a division of the sequences into

two major clades, the true KRMPs, containing most of the
previously identified KRMP sequences, and the KRMP-
like genes. The true KRMPs can be further divided into a
P. fucata-specific radiation and a P. maxima/margaritifera-specific
radiation. Some true KRMP genes fall outside these two groups
and branch with low support at the base of the KRMP clade.
This topology indicates a deep duplication of an ancestral
KRMP gene prior to the divergence of P. fucata from
P. maxima/P. margaritifera, giving rise to the KRMP and
KRMP-like lineages. Additional, lineage-specific duplications
have occurred subsequent to this divergence.

The complex evolutionary history of the KRMP genes
required the generation of a naming scheme that avoids pro-
viding false impressions of orthology. First, genes falling
within the KRMP-like clade were designated KRMPI.
A species-specific identifier was then added to the end of the
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Figure 5. Phylogenetic analysis of the relationship of KRMP genes produced from an alignment of the lysine-rich domain. Percentage of neighbour-joining bootstrap
support is shown when over 50% (reqular text); Bayesian posterior probabilities are shown when over 70% (bold text). The tree is unrooted owing to the lack of
appropriate outgroup, branch lengths are to scale (scale = substitutions/site). (Online version in colour.)

sequence name (P. fucata: f, P. margaritifera: r, P. maxima: x),
before each gene was assigned a unique number. Therefore,
P. margaritifera  possesses the gene PmargKRMPr6, and
P. maxima possesses the gene PmaxKRMPx6. These two genes
are not orthologues. A description of the relationships between
the gene names proposed here and those of previously
identified KRMP genes is provided in electronic supplemen-
tary material, table S6. P. maxima KRMP sequences have been
submitted to NCBI (accession numbers KC494055-65).

3.4. Reliability of gene assignments

Although this study identifies many new and previously
identified KRMP and shematrin genes, it is likely that more
remain to be identified. The methods used here are conserva-
tive, and two sequences that are highly similar are classified
as a single gene. It is likely that in many cases, these differences
do represent true gene copies. As an example, this may be
the case for PfuKRMPf3, which is found on two different
scaffolds. On scaffold 4694.1, its immediate downstream
neighbour is PfuKRMPf2, whereas on scaffold 22199.1 its
neighbour is PiuKRMPf5 (figure 3). The surrounding genomic
sequence of the gene is similar on both scaffolds; therefore, this
may be the result of either the duplication of a genomic region
or an assembly error. It is also possible that the methods used
here did not identify divergent shematrin and KRMP genes,
particularly in P. maxima and P. margaritifera for which
no whole-genome information is available. HMMER is likely
to be less effective in identifying short sequences as family
members, such as those generated by next-generation
sequencing technology. All KRMP and shematrin sequences
analysed in this study can be found in electronic
supplementary material, S1.

4. Discussion

4.1. KRMP and shematrin gene families have different

evolutionary histories

The most striking similarity between shematrin and KRMP
sequences is that of their composition—both gene families
encode proteins that contain glycine-rich RLCDs. When the
shematrin genes were first discovered, the glycine-rich
repeats were likened to those found in the proteins that
form spider silks and plant cell walls [12]. Although the simi-
larities between these disparate proteins may seem to be
coincidental, many other RLCD-containing proteins (and
many with glycine-rich repeats, in particular) have been
identified, most of which are involved in the formation of
tough, extracellular structures. Although the evolutionary
distance between the organisms possessing the structures
makes it unlikely that these proteins are homologous, the
similarities between them indicate that these RLCDs are func-
tionally significant and have a high degree of evolvability.

The mantle transcriptomes of three closely related Pinc-
tada species enables a more detailed analysis of the patterns
of evolution of genes encoding RLCDs. Previous research
has demonstrated that the parallel evolution of RLCDs is a
key feature of molluscan shell evolution [5]. The secretomes
of P. maxima and the gastropod Haliotis asinina were com-
pared, and although shematrin and KRMP genes were not
found in H. asinina, this gastropod’s mantle transcriptome
contains other, seemingly unrelated, RLCDs. The lack of simi-
larity between the Pinctada and Haliotis transcriptomes, and
even between shematrin and KRMP genes in different species
of pearl oyster, supports the proposition that many proteins
in the molluscan mantle secretome are rapidly evolving [4].
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The shematrins and KRMPs share many similarities in
addition to their sequence characteristics. Both gene families
are of a similar size, are highly expressed in mantle trans-
criptomes, and, based on other molluscan genomes and
transcriptomes, appear to be Pinctada-specific. Despite these
similarities, reconstruction of the evolutionary histories
of both gene families reveals differences in the timing of
family divergence. Orthologues of members of the shematrin
gene family are present in P. fucata, P. margaritifera and
P. maxima, indicating that the vast majority of gene dupli-
cation and divergence events of this gene family occurred
prior to the speciation of these pearl oysters (figure 6a). In
contrast to this, orthology of KRMP genes is not evident.
Although this may be due to rapid sequence divergence,
the clustering of several of the genes into species-specific
clades suggests that they have originated from more recent
lineage- and species-specific duplications. In addition, there
is little support for the position of some true KRMPs within
the phylogenetic tree, indicating that they may have dupli-
cated very soon after the origin of KRMP and KRMP-like
clades (figure 5). It, therefore, appears that the current comp-
lement of KRMP genes has been generated by multiple
duplications throughout the evolutionary history of pearl
oyster species (figure 6b), in contrast to the shematrin gene
family, which largely diversified before the separation of
P. fucata and P. margaritifera/P. maxima lineages (figure 6a).

4.2. Repetitive low-complexity domains
enable the rapid evolution of KRMPs and

shematrins

This study reveals that the shematrin and KRMP gene
families have undergone multiple duplications and extensive
sequence divergence since the emergence of this clade of
pearl oysters, supporting the proposition that these sequences
are fast evolving. This diversification appears to be facilitated
by the low-complexity, repetitive nature of the sequences,
which would increase the likelihood of mispairing during
replication [36]. Indeed, many of the sequence variants dis-
covered by HMMER differed only by the insertion or
deletion of a repeat element, and variation within repeat
sequences of other shell matrix genes has been previously
reported [37]. Rapid sequence divergence owing to the intrin-
sically unstable nature of repetitive coding sequences has also
been reported for spider silks [38-40], and is, therefore, a key
feature of proteins containing RLCDs.

In addition to the rapid expansion and evolution of she-
matrin and KRMP gene families, there appears to be little
evidence of gene loss, at least in the shematrins for which
the evolutionary reconstructions are the most reliable. All of
the shematrin orthology groups (i.e. shematrins 1-8, and
possibly shematrin 9) evolved before the diversification of
the three Pinctada species and most have been maintained
in all three species lineages for at least 14 million years.
Furthermore, the majority of the shematrin genes have simi-
lar expression patterns [12], raising the question of why so
many copies of these genes exist within pearl oyster genomes.
Although the generation of these gene families may have
occurred simply as a consequence of the innate evolvability
of their repetitive sequence, there may also be selective
advantages in increasing copy number, resulting in the reten-
tion of new gene copies. For example, there may be an
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Figure 6. (a) Reconstruction of the evolutionary history of shematrin and (b)
KRMP genes. Circles represent gene duplication events, lines represent indi-
vidual genes. Closed circles indicate nodes with a neighbour-joining bootstrap
value greater than 50% and/or Bayesian posterior probability greater than 70% in
phylogenetic trees, open circles indicate lower support and that tree topology
may differ from that shown (see figure 5 and electronic supplementary material,
figure S4). For clarity, KRMP-like genes are represented by grey lines in B. The
placement of the root (arbitrary owing to the lack of obvious outgroups) does
not affect the duplication trends seen, i.e. primarily before the divergence of
P. fucata from the P. maxima/margaritifera lineage for shematrins and primarily
after this divergence for KRMPs. (Online version in colour.)

advantage in expressing these genes in large amounts, and
increasing the gene copy number could increase the
number of transcripts produced. Transcriptome analyses of
the mantles in all three Pinctada species support this conten-
tion, with shematrins and KRMPs being amongst the most
highly represented transcripts in these mRNA pools [5,11].
There may also be undiscovered differences in the spatial or
temporal expression of these genes. For example, PfuShem9a
and PfuShem9b were not found within the mantle or pearl
sac transcriptome data, which may reflect differing roles of
these proteins.

Another possibility is that the genes generated from a
duplication event have gained a novel function (neofunctiona-
lization) or have partitioned the original functions of the
ancestral gene (subfunctionalization) [41]. Each shematrin is
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characterized by a unique combination of motifs and RLCDs
(figure 2), which may reflect different functions of the proteins.
For example, the acidic domains found in shematrins 2, 5 and 9
may inhibit CaCO; crystallization, as recombinant acidic pep-
tides show inhibitory activity in vitro [20]. The presence of all
shematrin genes in all three Pinctada spp. (with the possible
exception of shematrins 8 and 9) is consistent with supposition
that each shematrin, with its specific motifs and RLCD archi-
tecture, uniquely contributes to oyster shell formation.

This modular organization of rapidly evolving RLCDs
and other motifs [2] enables the evolution of new architec-
tures. For example, the differences between shematrins 1
and 2 are primarily owing to the presence of an acidic
domain in shematrin 2 (which also has been lost in one of
the products of a recent P. maxima shematrin 2 duplication;
Pmaxshem2f, figure 1). Rearrangements of motifs can also
be seen, for example, in the positions of the GX and GY
domains of shematrins 1 and 2. Therefore, it appears that
domain shuffling is an important process in the evolution
of shematrin sequences. This shuffling is likely to occur via
mispairing during replication rather than by exon shuffling,
as the genes are encoded entirely (in the case of KRMPs) or
almost entirely (in the majority of shematrins; electronic
supplementary material, figure S1) within single exons.

Other differences between shematrins 1 and 2 involve a
shift in the type of glycine-rich RLCD. Insights into how
changes in RLCDs may occur can be provided by the
P. maxima and P. margaritifera shematrin 4 sequences. The
two genes are orthologues, and are significantly divergent
in their C-terminal ends from PfuShem4. In P. margaritifera,
part of this region is comprised of five repeats of the sequence
"PSTGYAGYSYGY’, whereas in P. maxima, the repeat
sequence is ‘P(T/S)AGYGGYSYGY’. This implies that, after
the speciation event, sequence divergence has taken place
which has subsequently been homogenized across the
entire repeat region, presumably owing to gene conversion
within the sequence [42].

From these observations, we propose that the ancestral she-
matrin gene minimally possessed a signal peptide and basic
C-terminal sequence, as well as at least one glycine-rich
RLCD. Subsequent duplications and divergences, including
the loss and shulffling of various motifs and homogenization
of repeat regions lead to the generation of the shematrin
family, which consists of eight or nine orthology groups. The
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